- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
He, Qiu (1)
-
Liao, Xiaobin (1)
-
Truhlar, Donald G. (1)
-
Xia, Lixue (1)
-
Zhao, Maria X. (1)
-
Zhao, Yan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We have developed a new composite model chemistry method called WMS (Wuhan–Minnesota scaling method) with three characteristics: (1) a composite scheme to approximate the complete configuration interaction valence energy with the affordability condition of requiring no calculation more expensive than CCSD(T)/jul-cc-pV(T+d)Z, (2) low-cost methods for the inner-shell correlation contribution and scalar relativistic correction, and (3) accuracy comparable to methods with post-CCSD(T) components. The new method is shown to be accurate for the W4-17 database of 200 atomization energies with an average mean unsigned error (averaged with equal weight over strongly correlated and weakly correlated subsets of the data) of 0.45 kcal mol −1 , and the performance/cost ratio of these results compares very favorably to previously available methods. We also assess the WMS method against the DBH24-W4 database of diverse barrier heights and the energetics of the reactions of three strongly correlated Criegee intermediates with water. These results demonstrate that higher-order correlation contributions necessary to obtain high accuracy for molecular thermochemistry may be successfully extrapolated from the lower-order components of CCSD(T) calculations, and chemical accuracy can now be obtained for larger and more complex molecules and reactions.more » « less
An official website of the United States government
